

Reducing resource material consumption through IoT

A device oriented view

05006060700030301

Yannick Chammings CEO – Adeneo Embedded <u>ychamming</u>s@adeneo-embedded.com

10440 000

©2016 Adeneo Embedded & Subsidiaries. All Rights Reserved.

This document and the information it contains is confidential and remains the property of our company. It may not be copied or communicated to a third party or used for any purpose other than that for which it is supplied without the prior written consent of our company.

Sustaining billions of connected devices ?

Billions

Gartner

MATERIALS

Sustaining billions of connected devices ?

MATERIALS F O R U M

Billions

In 2016

Sustaining billions of connected devices ?

Billions

In 2020

Represents a strong impact to resource materials

Resource

material

Hence, a key question

www.adeneo-embedded.com

Sustaining the growth of connected devices

Resource Material reduction through IoT

Time

Is it relevant?

www.adeneo-embedded.com

©Giuseppe Colarusso

Material usage efficiency for connected devices

1. Manufacturing processes optimization

2. Increasing Systems Lifespan

3. Moving from replacement to recycling

1.

MANUFACTURING PROCESSES OPTIMIZATION

Manufacturing processes optimization

www.adeneo-embedded.com

Relies on optimizing transportation, manufacturing tools and supply chain

Not covered in this session (focused on device oriented scenarios)

2. INCREASING SYSTEMS LIFESPAN

From corrective to predictive maintenance

Increasing Equipments lifespan

Device -> Corrective / Incident driven maintenance

Connected Device -> Preventive / Automated maintenance

Smart Connected Device -> Predictive / Automated and Optimized Maintenance

The example of a coffee machine

www.adeneo-embedded.com

Corrective maintenance on non connected device

- Incident driven manual maintenance
- Corrective maintenance replacing damaged parts
- Best case: major parts replacement (mill, heater, water pump,...)
- Worst case: full equipment replacement

Preventive maintenance on connected device

Statistic driven

- Connected device reporting usage stats
- Statistic driven automated maintenance
- Preventive maintenance and cleanup allow increasing lifespan
- Fixing issues before seeing damages. Mainly minor parts replacement

Predictive maintenance on smart connected device

ML

- Bring in Machine Learning Intelligence
- Intelligence driven automated maintenance
- Predictive maintenance optimizes further maintenance activity
- Impact on device lifespan (less devices with corrective maintenance) and maintenance cost (reduced useless intervention)

of cup served, Qty coffee grounded, Qty milk used, Usability, etc...

Intelligence

driven

MOVING FROM REPLACEMENT TO RECYCLING

Hardware and Software efficiency through IoT

3.

1. Data collection for better composition / material recycling -> Data centric

From replacement to recycling

2. Hardware modularity for better design efficiency -> Device centric

3. Solving Hardware challenges with Software impact -> Device centric

Better Hardware design Efficiency

✓ HW Modularity and adaptability
✓ Open source Hardware
✓ Longer lifespan and easier parts recycling

Software Modularity

- Open Source policy -> ability to "hack" devices' software
- ✓ Community driven mindset of users / consumers
- Opportunity to Reduce equipments built-in obsolescence

Upgrade devices without Hardware replacement

Software Adaptability

Benefits:

- ✓ Devices' datas cross usage giving 2nd life to equipments
- ✓ Moving from Smart Devices to Smart concepts

Creating smart systems

✓ Smart Cities, Smart Mobility, Smart Energy management

Create new usages for devices

Self evolving Software

Automated software upgrades adapting devices capabilities

Reduced built-in obsolescence (when combined with predictive maintenance)

Examples : Self evolving Software

Adapting devices process/behaviors based on Data mining / Analytics to reduce hardware parts' wear

✓ Ex: different coffee brewing process to improve coffee mill's wear

Enable new self maintenance capabilities based on failure analysis

✓ Ex: anticipating failures with improved embedded software detecting preliminary signs of issues

©Giuseppe Colarusso

Increased number of connected devices impact

• Limited to connectivity cost. Represents a few \$ per device. Likely to be less than 10% of overall device value

Predictive maintenance impact

Conclusion

• Coffee machine scenario: estimation of 30% impact on parts replacement and equipment lifespan

Software modularity, upgradability and Adaptability for IoT connected devices

• Too early to measure impact potential

: Questions

www.adeneo-embedded.com

System Software Integrator For Embedded devices and smart objects

System Software Integrator For Embedded devices and smart objects

Yannick Chammings, CEO ychammings@adeneo-embedded.com